Our experience in microfluidics market demonstrates a thorough understanding of applications and industries. We use this knowledge to shape the future of microfluidics, and continuously push the boundaries to find new and better ways to solve scientific challenges. Explore our customer stories to learn how our products helped them to achieve the results they wanted and optimize their processes. 


Fluorescent biosensors as tools for drug therapeutics

Researchers in the School of Pharmacy at the University of Nottingham are using novel techniques to enhance studies on drug encapsulation and therapeutic delivery, optimizing microfluidic reaction conditions to produce fluorescent PLGA to act as a biosensor, storing and releasing biological medicines dependent on environmental changes.



Improving the reproducibility of microcapsule production using microfluidics

Researchers at the University of Cambridge are using microencapsulation technologies developed by Dolomite Microfluidics to develop self-healing construction materials. Dr Livia Ribeiro discusses the challenges associated with producing these microcapsules, and the benefits that microfluidics offers over other methodologies.


Join the Dolomite Community

Are you using our product(s) in your research or production? If yes, tell us how it helped you to achieve the results you wanted and optimize your processes. In exchange, we will assist you in gaining positive media coverage, by promoting it in relevant publications, free of charge.


Press Releases

Developing an advanced microfluidic method for manufacture of taxane-loaded nanoparticles for cancer treatment

Developing an advanced microfluidic method for manufacture of taxane-loaded nanoparticles for cancer treatment

Researchers at the University of Porto, Portugal are using Dolomite Microfluidics chips to manufacture diverse therapeutic nanoplatforms, including an advanced microfluidic method for manufacture of taxane-loaded nanoparticles for cancer treatment.

Developing microfluidic routes to effective nanoparticle drug delivery systems

Developing microfluidic routes to effective nanoparticle drug delivery systems

A Dolomite Microfluidics’ set-up is helping researchers in the University of Manchester’s Division of Pharmacy and Optometry to enhance drug delivery by formulating PLGA drug delivery systems for oncology applications, and liposomes for the co-delivery of fat- and water-soluble therapeutics.

Making liposomal formulations for the delivery of RNA vaccines

Making liposomal formulations for the delivery of RNA vaccines

A Dolomite Microfluidics’ set-up for high throughput cell encapsulation is helping researchers at the Department of Medicine at Imperial College, London, to develop novel liposomal formulations for RNA vaccines targeting diseases such as HIV, influenza, rabies and chlamydia.

Innovative drug delivery platform relies on Telos<sup>®</sup> Reagent Chips

Innovative drug delivery platform relies on Telos® Reagent Chips

Telos® 2 Reagent Chips from Dolomite Microfluidics have helped San Francisco-based ProLynx LLC to develop a novel drug delivery platform.

Archived testimonials

  • Dolomite aids drug encapsulation studies



High-throughput identification of peptide agonists against GPCRs by co-culture of mammalian reporter cells and peptide-secreting yeast cells using droplet microfluidics

Kenshi Yaginuma, Wataru Aoki, Natsuko Miura, Yuta Ohtani, Shunsuke Aburaya, Masato Kogawa, Yohei Nishikawa, Masahito Hosokawa, Haruko Takeyama, Mitsuyoshi Ueda

Scientific Reports


Since G-protein coupled receptors (GPCRs) are linked to various diseases, screening of functional ligands against GPCRs is vital for drug discovery. In the present study, we developed a high-throughput functional cell-based assay by combining human culture cells producing a GPCR, yeast cells secreting randomized peptide ligands, and a droplet microfluidic device. We constructed a reporter human cell line that emits fluorescence in response to the activation of human glucagon-like peptide-1 receptor (hGLP1R). We then constructed a yeast library secreting an agonist of hGLP1R or randomized peptide ligands. We demonstrated that high-throughput identification of functional ligands against hGLP1R could be performed by co-culturing the reporter cells and the yeast cells in droplets. We identified functional ligands, one of which had higher activity than that of an original sequence. The result suggests that our system could facilitate the discovery of functional peptide ligands of GPCRs.


Microfluidic fabrication of wrinkled protein microcapsules and their nanomechanical properties affected by protein secondary structure

Yiming Feng, Youngsoo Lee


Journal of Food Engineering




Wrinkled microcapsules have attracted great interest due to their distinguished features, including enhanced adhesion propensity and release profiles. These features could be beneficial for food-related applications and improve the bioavailability of encapsulated compounds by promoting their attachment to epithelium. However, the fabrication of such microcapsules with food-grade materials has been met with limited success. In this study, a facile approach to produce wrinkled microcapsules using a food-grade protein, zein, is proposed. Internal phase separation was used to form zein microcapsules and three acids (phytic acid, citric acid, and succinic acid) were incorporated at two centration levels (10 mM and 20 mM) to modify the secondary structure of zein in the microcapsules. The results showed that the mechanical properties of the microcapsules, which were characterized by nanoindentation, were greatly dependent on the protein secondary structure, particularly the α-helix structure. The morphology of the microcapsules was evaluated by image analysis. An extensive wrinkle was observed on the surfaces of the microcapsules with high viscoplasticity. Among the three acids used in this study, phytic acid significantly increased the degree of wrinkling and viscoplasticity of the microcapsules. Further characterization with circular dichroism and wide-angle X-ray scattering suggested that a less ordered zein secondary structure was formed in the samples prepared using phytic acid than in those prepared using other acids or without acid, which further supports the hypothesis that the nanomechanical properties and degree of wrinkling are associated with the protein secondary structures.


Synthesis and self-assembly of Xylan-based amphiphiles: from bio-based vesicles to antifungal properties

Julien Rosselgong, Maud Chemin, Cedric Cabral Almada, Gauvin Hemery, Jean-Michel Guigner, Guillaume Chollet, Gilles LABAT, Denilson da Silva Perez, Frederique Ham-Pichavant, Etienne Grau, Stéphane Grelier, Sebastien Lecommandoux, Henri Cramail



This work aims at designing functional biomaterials through selective chemical modification of xylan from beechwood. Acidic hydrolysis of xylan leaded to well-defined oligomers with an average of six xylose units per chain and with an aldehyde group at the reductive end. Reductive amination was performed on this aldehyde end-group to introduce an azide reactive group. ‘Click chemistry’ was then applied to couple these hydrophilic xylans moieties with different hydrophobic fatty acid methyl esters that were previously functionalized with complementary alkyne functions. The resulting amphiphilic bio-based conjugates were then self-assembled using three different methods, namely direct solubilization, thin-film rehydration/extrusion and microfluidics. Well-defined micelles and vesicles were obtained and their high loading capacity with propiconazole as an antifungal active molecule was shown. The resulting vesicles loaded with propiconazole in a microfluidic process, proved to significantly improve the antifungal activity of propiconazole, demonstrating the high potential of such xylan-based amphiphiles.